jrnr Documentation
Release 0.2.4

ClimatelmpactLab

Apr 21, 2020

Contents

jrnr

1.1 Features.

1.2 Credits

Installation

2.1 Stable release
2.2 From sources

Usage

3.1 Interactive mode
3.2 Running your job in batch mode
33 run ... e

34 status

Contributing

4.1 Types of Contributions
4.2 Get Started!
4.3 Pull Request Guidelines
44 TIpS

Credits

5.1 Development Lead
5.2 Contributors

History

6.1 0.2.4(2020-04-21)
6.2 0.2.3(2018-01-16)
6.3 0.2.2(2017-08-28)
6.4 0.2.1(2017-07-31)
6.5 0.2.0(2017-07-31)
6.6 0.1.2(2017-07-28)
6.7 0.1.1(2017-07-28)
6.8 0.1.0 (2017-07-28)

Example jranr script

3.5 Technical note

........................... 3

8 Indices and tables

27

jrnr Documentation, Release 0.2.4

Contents:

Contents 1

jrnr Documentation, Release 0.2.4

2 Contents

CHAPTER 1

jrnr

Job Runner for Climate Impact Lab Jobs
* Free software: MIT license
* Documentation: https://jrnr.readthedocs.io.

jrnr is a tool to help you create, manage, and monitor your highly parallelizable jobs.

1.1 Features

* Job set-up utility for running parallel jobs

* Currently only supports running slurm jobs

1.2 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

https://pypi.python.org/pypi/jrnr
https://travis-ci.org/ClimateImpactLab/jrnr
https://jrnr.readthedocs.io/en/latest/?badge=latest
https://jrnr.readthedocs.io
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

jrnr Documentation, Release 0.2.4

4 Chapter 1. jrnr

CHAPTER 2

Installation

2.1 Stable release

To install jrnr, run this command in your terminal:

’$ pip install Jjrnr

This is the preferred method to install jrnr, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for jrnr can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/ClimateImpactLab/jrnr

Or download the tarball:

’$ curl -OL https://github.com/ClimateImpactLab/jrnr/tarball/master

Once you have a copy of the source, you can install it with:

’$ python setup.py install

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/ClimateImpactLab/jrnr
https://github.com/ClimateImpactLab/jrnr/tarball/master

jrnr Documentation, Release 0.2.4

6 Chapter 2. Installation

CHAPTER 3

Usage

jrnr is a python library currently configured to work on systems using slurm workload managers. If your computing
workflows can be parallelized, jrnr can help.

jrnr is an application that relies on click, the python command line tool.

At the top of your python module add this to the import section:

’from jrnr.jrnr import slurm_runner

3.1 Interactive mode

Frequently, you’ll want to do some basic debugging and iteration to make sure your batch jobs will run as expected.
To assist this process, jrnr has an interactive mode that allows you to run a single job in an ipython session.

In [1]: import tas
In [2]: tas.make_tas.run_interactive (42)

2018-01-10 17:01:55,001 Beginning job

kwargs: { 'model': 'NorESM1-M', 'scenario': 'rcp45', 'year': '2054'}
2018-01-10 17:02:43,733 beginning

2018-01-10 17:02:43,733 producing_tas

Oout[3]:

<xarray.Dataset>

Dimensions: (lat: 720, lon: 1440, time: 365)

Coordinates:
« lon (lon) float32 -179.875 -179.625 -179.375 -179.125 -178.875
* time (time) datetime64[ns] 2054-01-01T12:00:00 2054-01-02T12:00:00
x lat (lat) float32 -89.875 -89.625 -89.375 -89.125 -88.875 -88.625
Data variables:
tas (time, lat, lon) float32 272.935 272.937 272.931 272.911
Attributes:

(continues on next page)

https://slurm.schedmd.com/
http://click.pocoo.org/5/

jrnr Documentation, Release 0.2.4

(continued from previous page)

version: 1.0

repo: https://gitlab.com/ClimateImpactLab/tas/

frequency: annual

oneline: Average Daily Temperature, tavg

file: tas.py

year: 2054

write_variable: tas

description: Average Daily Temperature, tavg\n\n Average Daily Temper...
execute: python tas.py run

project: gcp

team: climate

dependencies: ['/global/scratch/groups/co_laika/gcp/climate/nasa_bcsd/. ..
model: NorESM1-M

As you can see, if you setting up logging, the logging information will print to wherever you direct stdout. In this
case, ininteractive mode, it prints to the ipython terminal. In batch mode, jrnr logs can be found in the directory you

specified as run—{ job_name}—-{job_id}-{task-id}.log.

3.2 Running your job in batch mode

The slurm_runner decorator function in jrnr acts as a wrapper around your main function. Make sure that above
your main function you have added @s lurm_runner (). With this enabled, you can use the command line to launch

your jobs on the slurm workload manager.

Make sure you are in the directory where your python module is located. Let’s say we are running the job specified in

Example jrnr script. Let’s look at what the he 1p function does.

$ python tas.py —--help
Usage: tas.py [OPTIONS] COMMAND [ARGS]...

Options:
—--help Show this message and exit.

Commands :
cleanup
do_job
prep
run
status
wait

We can see that this will give us the list of options. Let’s look at run.

3.3 run

Let’s first have a look at the options with the run command.

$ python run --help

Usage: tas.py run [OPTIONS]

(continues on next page)

Chapter 3. Usage

https://slurm.schedmd.com/

jrnr Documentation, Release 0.2.4

(continued from previous page)

Options:
-1, —-limit INTEGER Number of iterations to run
-n, -—-Jjobs_per_node INTEGER Number of jobs to run per node
-x, ——maxnodes INTEGER Number of nodes to request for this job
-3j, ——Jjobname TEXT name of the Jjob
-p, ——partition TEXT resource on which to run
-d, ——-dependency INTEGER
-L, —-—-logdir TEXT Directory to write log files
-u, —--uniqueid TEXT Unique job pool id
—--help Show this message and exit.

The most important options are u, j and L. To specify a job you need u and j since these parameters uniquely identify
a job and allow you to track the progress of your jobs. An example command is below

$ python tas.py run -u 001 -3j tas

This creates a job with a unique id of 00/ and a job name of fas.

By specifying some of the options listed above, you can adjust the behavior of your slurm jobs. For example, you
can put your log files in a specific directory by specifying a value for argument L. Additionally, if you want to use a
specific partition on your cluster you can speify the p option. Similarly, if your job is particularly compute intensive,
with n you can adjust the number of jobs per node.

$ python tas.py run -u 001 -3j tas -L /logs/tas/ -p savio2_bigmem -n 10

Its important to note that, by default, log files will be written to the directory where you are executing the file. De-
pending on how large your job is you may want to put these log files elsewhere.

If you want to fully take advantage of BRC’s computing capacity you can run

$ python tas.py run -u 001 -3j tas -L /logs/tas/ —-p savio_bigmem -n 10
run job: 98
on—-finish Jjob: 99
$ python tas.py run -u 001 -3j tas -L /logs/tas/ -p savio2_bigmem -n 10
run job: 100
on-finish job: 101
$ python tas.py run -u 001 -j tas -L /logs/tas/ —-p savio2 -n 5
run job: 104
on—-finish job: 105
$ python tas.py run -u 001 -j tas -L /logs/tas/ -p savio -n 5
run job: 106
on-finish job: 107

How many jobs should you run on each node?

To determine this, you’ll need to divide the amount of memory per node by the amount of memory required by your
job. To determine the amount of memory per node, you can look at the Savio user guide. For example, if I have a job
that requires 6GB of RAM and I am running on the savio2_bigmem partition. Then we’ll add 2GB of buffer to our
6GB RAM requirement and take the result of 128/ 8 to get 16 jobs.

3.4 status

You launched your job 10 minutes ago and you want to check on the status of your jobs. We can check with the
status option. Let’s look again at our tas . py file.

3.4. status 9

http://research-it.berkeley.edu/services/high-performance-computing/user-guide/savio-user-guide

jrnr Documentation, Release 0.2.4

$ python tas.py status -u 001 -j tas

jobs: 4473
done: 3000
in progress: 1470
errored: 3

Notice that we use the unique id 001 and the jobname t as that we used when we created the job. You must use these
values or we cannot compute the progress of our job.

3.5 Technical note

3.5.1 How does this jrnr track the status of my jobs?

In your directory where you are running your job, jrnr creates a locks directory. In this locks
directory, for each job in your set of batch jobs a file is created with the following structure
{job_name}-{unique_id}-{job_index}. When a node is working on a job, it adds the . 1ck file exten-
sion to the file. When the job is completed, it converts the ./ck extension to a . done extension. If, for some reason,
the job encounters an error, the extension will shift to .err. When you call the status command jrnr is just
displaying the count of files with each file extension in the locks directory.

3.5.2 How does jrnr construct a job specification?

Each jrnr job can be specified with arguments from key, value dictionaries. Since these arguments are taken from a
set of known possible inputs we can take each key and its associated set of possible values and compute the cartesian
product of every key, value combination. In the background of jrnr, we take lists of dictionaries and use the python
method itertools.product to specify the superset of possible batch jobs. A demonstration is below:

In [1]: def generate_jobs (job_spec):
for specs in itertools.product (*job_spec) :
yield _unpack_job (specs)

In [2]: def _unpack_job (specs):
job = {}
for spec in specs:
job.update (spec)
return job

In [3]: MODELS = list (map(lambda x: dict (model=x), [
'ACCESS1-0",
'bcc-csml-1",
'"BNU-ESM',
'CanESM2"',
1))

In [4]: PERIODS = (
[dict (scenario="historical', year=y) for y in range (1981, 2006)] +

[dict (scenario="rcp45"', year=y) for y in range (2006, 2100)1])

In [5]: job_spec = [PERIODS, MODELS]

(continues on next page)

10 Chapter 3. Usage

jrnr Documentation, Release 0.2.4

(continued from previous page)

In [6]: jobs = list (generate_jobs (job_spec))

In [7]: Jjobs[:100:10]

Oout[7]:

[{'model': '"ACCESS1-0', 'scenario': 'historical', 'year': 1981},
{'model': 'BNU-ESM', 'scenario': 'historical', 'year': 1983},
{'model': 'ACCESS1-0', 'scenario': 'historical', 'year': 1986},
{'model': 'BNU-ESM', 'scenario': 'historical', 'year': 1988},
{'model': 'ACCESS1-0', 'scenario': 'historical', 'year': 1991},
{'model': 'BNU-ESM', 'scenario': 'historical', 'year': 1993},
{'model': 'ACCESS1-0', 'scenario': 'historical', 'year': 1996},
{'model': 'BNU-ESM', 'scenario': 'historical', 'year': 1998},
{'model': 'ACCESS1-0', 'scenario': 'historical', 'year': 2001},
{'model': 'BNU-ESM', 'scenario': 'historical', 'year': 2003}]

3.5. Technical note 11

jrnr Documentation, Release 0.2.4

12 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/ClimatelmpactLab/jrnr/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

13

https://github.com/ClimateImpactLab/jrnr/issues

jrnr Documentation, Release 0.2.4

4.1.4 Write Documentation

jrnr could always use more documentation, whether as part of the official jrnr docs, in docstrings, or even on the web
in blog posts, articles, and such.

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ClimateImpactLab/jrnr/issues.

If you are proposing a feature:

» Explain in detail how it would work.
» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up jrar for local development.

1. Fork the jrar repo on GitHub.
2. Clone your fork locally:

$ git clone git@github.com:your_name_here/jrnr.git

. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up

your fork for local development:

$ mkvirtualenv jrnr
$ cd Jjrnr/
$ python setup.py develop

. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other

Python versions with tox:

$ flake8 jrnr tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

. Submit a pull request through the GitHub website.

14

Chapter 4. Contributing

https://github.com/ClimateImpactLab/jrnr/issues

jrnr Documentation, Release 0.2.4

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
ClimateImpactLab/jrnr/pull_requests and make sure that the tests pass for all supported Python versions.

4.4 Tips

To run a subset of tests:

’$ pytest tests.test_jrnr

4.3. Pull Request Guidelines 15

https://travis-ci.org/ClimateImpactLab/jrnr/pull_requests
https://travis-ci.org/ClimateImpactLab/jrnr/pull_requests

jrnr Documentation, Release 0.2.4

16 Chapter 4. Contributing

CHAPTER B

Credits

This repository is a project of the Climate Impact Lab

5.1 Development Lead

e Justin Simcock <jsimcock @rhg.com>

5.2 Contributors

None yet. Why not be the first?

17

http://www.impactlab.org
mailto:jsimcock@rhg.com

jrnr Documentation, Release 0.2.4

18 Chapter 5. Credits

CHAPTER O

History

6.1 0.2.4 (2020-04-21)

* Compatibility patch allowing commands with underscores to be normalized to dashes in click app returned by
jrr.jrar.slurm_runner. Thanks for the digging and issue raising @simondgreenhill!

6.2 0.2.3 (2018-01-16)

* Documentation & testing improvements

6.3 0.2.2 (2017-08-28)

» Update to documentation

* jrnr attempts to remove . 1ck files if there is a keyboard interrupt or system exit

6.4 0.2.1 (2017-07-31)

e Fix bug in slurm_runner.do_job which caused job duplication when race conditions on lock object cre-
ation occur (GH #3)

* Infer filepath from passed function in slurm_runner. Removes need to supply filepath argument in
slurm_runner function calls (GH #5)

* Adds return_index parameter to slurm_runner (GH #7)

19

https://github.com/ClimateImpactLab/jrnr/issues/3
https://github.com/ClimateImpactLab/jrnr/issues/5
https://github.com/ClimateImpactLab/jrnr/issues/7

jrnr Documentation, Release 0.2.4

6.5 0.2.0 (2017-07-31)

* Fix interactive bug — call interactive=True on slurm_runner.run_interactive () (GH #I)

¢ Add slurm_runner as module-level import

6.6 0.1.2 (2017-07-28)

* Add interactive capability

6.7 0.1.1 (2017-07-28)

* Fix deployment bugs

6.8 0.1.0 (2017-07-28)

* First release on PyPI.

20 Chapter 6. History

https://github.com/ClimateImpactLab/jrnr/issues/1

CHAPTER /

Example jrnr script

This module demonstrates the specification of a jrnr script

This jrnr script will compute daily average temperature
as a the average of daily max and min temperature.

To run, jrnr requires a parameterized job spec. This is constructed
as a list on line 105 and handed to jrnr's ‘slurm _runner decorator on line 123.

Each job, interactive and batch, in jrnr receives a
dictionary which fully parameterizes the input arguments.

To parameterize your job spec jrnr takes the
cartesian product of the items in lists of dictionaries.
"JOB_SPEC" on line 112 is simply a list of those lists.

rro

import os

import logging

import time

import xarray as xr

import pandas as pd

import numpy as np

import climate_toolbox.climate_toolbox as ctb
from jrnr.jrnr import slurm_runner

#set up logging format and configuration
FORMAT = '<?% (asctime)-15s % (message)s'
logging.basicConfig (format=FORMAT)
logger = logging.getLogger ('uploader')
logger.setLevel ('DEBUG")

(continues on next page)

21

jrnr Documentation, Release 0.2.4

(continued from previous page)

description = '\n\n'.join/(
map (lambda s: ' '.join(s.split('\n'")),
doc__.strip() .split ('\n\n')))

oneline = description.split('\n') [0]

__author__ = "Justin Simcock'
__contact__ = 'jsimcock@rhg.com'
__version__ = '1.0"

READ_PATH = (

'/global/scratch/groups/co_laika/gcp/climate/nasa_becsd/reformatted/"' +
'{scenario}/{model}/{variable}/" +
'{variable}_day_BCSD_{scenario}_rlilpl_{model}_{year}/1.0.nc4d")

WRITE_PATH = ('/global/scratch/groups/co_laika/gcp/climate/nasa_bcsd/reformatted/' +
'{scenario}/{model}/{variable}/' +
'{variable}_day_BCSD_{scenario}_rlilpl_{model}_{year}/' +
'{version}.nc4d')

ADDITIONAL_METADATA = dict (
oneline=oneline,
description=description,
author=__author__,
contact=__contact__,
version=__version__ ,
repo='https://gitlab.com/ClimateImpactLab/make_tas/"',
file=str(__file_),
execute="python {} run'.format (str(_file)),
project='gcp',
team='climate',
frequency="annual',
write_variable='tas',
dependencies="")

def make_tas_ds (tasmax, tasmin):

tas = xr.Dataset ()
tas['tas'] = (tasmax.tasmax + tasmin.tasmin) / 2.
return tas

PERIODS = (
[dict (scenario="'historical', year=y) for y in range (1981, 2006)] +
[dict (scenario="'rcp45', vyear=y) for y in range (2006, 2100)] +
[dict (scenario="'rcp85', year=y) for y in range (2006, 2100)1])

MODELS = list (map(lambda x: dict (model=x), [
'ACCESS1-0",
'bcc-csml-1",
'"BNU-ESM',
'CanESM2',
'cesMa ',
'CESM1-BGC',

(continues on next page)

22 Chapter 7. Example jrnr script

jrnr Documentation, Release 0.2.4

(continued from previous page)

'CNRM-CM5 ',
'CSIRO-Mk3-6-0",
'"GFDL-CM3',
'GFDL-ESM2G',
'GFDL-ESM2M',
'IPSL-CM5A-LR"',
'IPSL-CM5A-MR"',
'MIROC-ESM-CHEM',
'"MIROC-ESM',
"MIROCS',
'MPI-ESM-LR',
'MPI-ESM-MR',
"MRI-CGCM3',
'inmcm4',
'NorESM1-M'

1))

JOB_SPEC = [MODELS, PERIODS]

def validate_tas(tas):

rro

Make sure NaNs are not present
rr

msg_null = 'DataArray contains NaNs'

msg_shape = 'DataSet dims {} do not match expected’

tas_nan = tas.tas.sel(lat=slice(-85,85)) .isnull() .sum() .values

assert tas_nan == , msg_null

assert tas.dims['lat'] == 720, msg_shape.format (tas.dims['lat"'])

assert tas.dims['lon'] == 1440, msg_shape.format (tas.dims['lon'])

assert tas.dims['time'] in [364, 365, 366], msg_shape.format (tas.dims['time'])
assert tas.lon.min() .values == -179.875

assert tas.lon.max () .values == 179.875

return

@slurm_runner (job_spec=J0OB_SPEC)
def make_tas (metadata,
scenario,
year,
model,
interactive=False

) e

metadata.update (ADDITIONAL_METADATA)

tasmin_read = READ_PATH.format (variable="tasmin',
tasmax_read = READ_PATH.format (variable='tasmax',

metadatal['dependencies'] =

tas_write = WRITE_PATH.format (variable='tas',

if os.path.isfile(tas_write) and not interactive:
tas = xr.open_dataset (tas_write,

autoclose=True,

*+metadata)
*+metadata)

str([tasmin_read, tasmax_read])

+*+metadata)

chunks={"time': 100}) .load()

(continues on next page)

23

jrnr Documentation, Release 0.2.4

(continued from previous page)

tas = ctb._standardize_longitude_dimension (tas)
else:
tasmax = xr.open_dataset (tasmax_read, autoclose=True, chunks={'time': 100}).
—load()
tasmin = xr.open_dataset (tasmin_read, autoclose=True, chunks={'time': 100}).
—~load /()

logger.debug ('beginning')

logger.debug ('producing_tas')
tas = make_tas_ds(tasmax, tasmin)
tas = ctb._standardize_longitude_dimension (tas)

tas.attrs.update (metadata)

if interactive:
return tas

logger.debug ('checking_tas_path')
if not os.path.isdir (os.path.dirname (tas_write)):
os.makedirs (os.path.dirname (tas_write))

tas.to_netcdf (tas_write + '~', encoding={var : {'dtype': 'float32'} for var in_

—tas.data_vars.keys () })
logger.debug ('write_tas_path')

validate_tas (tas)

logger.debug ('validate_tas')
os.rename (tas_write + '~', tas_write)

logger.debug (' job_complete')

if name_ == '_ _main_ ':
make_tas ()

(continues on next page)

24 Chapter 7. Example jrnr script

jrnr Documentation, Release 0.2.4

(continued from previous page)

25

jrnr Documentation, Release 0.2.4

26 Chapter 7. Example jrnr script

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

27

	jrnr
	Features
	Credits

	Installation
	Stable release
	From sources

	Usage
	Interactive mode
	Running your job in batch mode
	run
	status
	Technical note

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.2.4 (2020-04-21)
	0.2.3 (2018-01-16)
	0.2.2 (2017-08-28)
	0.2.1 (2017-07-31)
	0.2.0 (2017-07-31)
	0.1.2 (2017-07-28)
	0.1.1 (2017-07-28)
	0.1.0 (2017-07-28)

	Example jrnr script
	Indices and tables

